长沙科盛电气技术有限公司开发和生产了电源防雷箱、电源防雷模块、计算机网络防雷器、监控系统防雷器、天馈线路防雷器、音频线路防雷器、避雷针和接地降阻材料等8个系列160余种产品,全面满足各行各业的综合防雷需要。
在专业雷电防护领域,根据产品具体应用分类,可以将其分为直击雷电防护装置、感应雷电防护装置、接地产品及雷电监测系统四大类。
直击雷电防护装置的产品主要有接闪器、引下线等。接闪器主要是通过吸引雷电**,使主放电都集中在它的上面来保护附近比它低的物体免受雷击,接闪器又包括有避雷针、避雷线、避雷带等。引下线是用来连接接闪器与接地装置,将雷电流引入到地底下。
感应雷电防护装置包括等电位连接产品和过电压保护产品。等电位连接产品主要是将被保护系统内的所有金属物体进行电气连接,用来使电位连接器两端电位基本相等,消除之间的放电现象,从而避免由于电位差值过高危及设备安全;过电压保护产品主要是用来将过电压限制在设备能承受的范围内,保护设备免受损坏,过电压保护产品主要是SPD,包括电源SPD、信号SPD、天馈SPD,它们分别安装在各种电子设备的电源线、信号线以及天馈线路中,利用SPD的保护特性,将线路上过电压限制在设备能承受的范围内,保护设备免遭损坏。
接地产品用于使雷电流终泄放入大地,不管是防直击雷、感应雷、或其他形式的雷,没有合理而良好的接地装置是不能可靠雷电防护的,接地产品通常埋在地底下用来使设备与大地之间实现低阻抗的电气连接。
雷电监测系统主要是用来实时监测雷电的发生、发展及消亡过程,可以对雷电的发展趋势进行预测,起到预警的作用,同时能够提供处理雷电故障所需的信息及分析数据。
近年来感应雷经过信号线路传输击坏设备的事时有发生,大家对信号线路的防雷也越来越重视,本文着重为大家介绍一下信号防雷器。
一、信号防雷器知识
信号防雷器是浪涌保护器的一种,其作用是保护信号传输设备免受雷击破坏。通信设备、信号传输等设备,它们都属于低电流的设备,当电流电压**过一定的额度,就会影响设备的正常工作。然而,在雷雨天气雷电流一般都会通过信号线路侵入到信号设备,这时,信号防雷器就起到了至关重要的作用。
二、信号防雷器分类
信号线路种类繁多,每种线路都有对应的信号防雷器,主要分为:
网络信号防雷器;
网络信号防雷器是保护网络线路的新型信号防雷器,两端都是RJ45的水晶头接口,串联在网络线路中,防雷器做接地,选用网络防雷器的时候要注意网络的传输速率,主要分为百兆网络防雷器和千兆网络防雷器。
信号防雷器;
信号防雷器是保护线路的,有二合一监控防雷器,三合一监控防雷器,接口类型分为BNC,RJ45网络接口,主要用在监控系统。
音频信号防雷器;
音频信号防雷器主要用于电话线路的防雷,RJ11水晶头接口,串联于线路中,防雷器做接地。
控制信号防雷器;
主要有RS485控制防雷器和4-20ma模拟量信号防雷器,多用于工控系统。
天馈信号防雷器;
用于天馈线路的防雷器,多用于通信基站上面的馈线防雷。
浪涌保护器,是低压领域雷电防护的主力产品。其在设计之初,基于供电系统类型的不同,采用了不同的设计结构:一是3+1(3PN)结构,二是4+0(4P)结构。
4+0结构的浪涌保护器主要用于TN-S供电系统的设备防雷保护,比如大多数的数据机房就是采用的TN-S供电系统。从保护模式上来说,4+0结构的浪涌保护器采用的是共模保护方式,也就是相线対地线和零线対地线之间的保护。3+1结构,或者说3PN结构的浪涌保护器,采用的是全模保护方式(相线対零线,零线对地线),采用该种结构的浪涌保护器适用于所有类型供电系统线路(IT、TT、TN-C、TN-S、TN-C-S)设备的防雷保护。因为其保护模式更全,所以,一般在较高保护需求的场所,多采用3PN结构的浪涌保护器。
按照上面所述,对于TN-S系统,就出现了两种浪涌保护器选型方案,即对于TN-S系统来说,既可以选择3PN结构浪涌保护器,也可以选择4P结构浪涌保护器。在实际项目中,一般的防雷公司都会**选配3PN来取代4P结构的浪涌保护器。但是不了解防雷技术的人大多会不理解,为什么在TN-S系统中3PN结构的浪涌保护器也可以用呢?
早年因为经济条件的限制,多采用TT供电系统,是因为TT系统在保证了基本的供电稳定性和安全性的基础上,相比于TN-S系统少了一根的接地线,在成本上会节省很多。近年来,尤其是2010年以后,我国经济高速发展,有了充足的资金支持,在供电系统安全性上也越来越重视,现阶段某些安全要求较高的工厂、施工临时用电已经在规范中强制要求采用三相五线制接地电源系统TN-S。
接下来,我们就来分析为什么3PN结构的浪涌保护器可以取代4P的浪涌保护器在TN-S系统中使用。在此之前,需要先说明为什么TT系统需要使用3PN结构的浪涌保护器:
1、TT系统选用3PN浪涌保护器的原因:
如图1所示,当某一相线浪涌故障失效时,由于放电间隙的隔离作用,故障电流会经过N线返回电源而不经过R1和R2,造成金属性短路,该短路不会造成设备产生对地电压,也就不会造成电击事故,所以TT系统采用3PN结构的浪涌保护器。
2、TN-S系统采取4P和3PN结构浪涌保护器区别:
4P和3PN结构浪涌保护器区别1.png
图2所示为TN-S系统3PN接法,可以看出,当其中某一相浪涌保护器故障失效时,原理与TT系统一致,这里不做赘述。图3所示为4P接法,因为PE线没有对地电压,与N线相似,所以,当其中某一相浪涌保护器故障失效时,电流经PE线返回电源,但是因为在同一变压器供电范围内,TN-S系统中的PE线多是连通的,当某一相电涌失效,会造成该相接地故障,该故障电压会沿着PE线传导到其他设备,从而威胁到同一变压器供电范围内的其他设备的安全稳定,如果此时系统中某一台设备的等电位连接不良,将会发生设备损坏的现象。
经上所述,在TN-S系统中,可以选用3PN结构形式浪涌保护器,并且比4P结构浪涌保护器保护效果更好。
为什么必须要安装多级防雷器?
每个建筑的电源线路都有所差异,那么我们在对电源线路进行防雷设计的时候,也会随着勘察现场的不同而发生改变。
通常情况下,电源线路的防雷需要进行多个不同级别的防雷,譬如电源一级防雷器、电源二级防雷器、电源三级防雷器,甚至更多。为什么必须要安装多级防雷器呢,首先这需要我们对防雷器有一个初步的了解。
防雷器有两个重要参数,通流容量和保护水。通流容量以KA为单位,表示防雷器能够承受和泄放雷电能量的能力;保护水即限制电压,是防雷器动作,发挥防雷效果的启动电压。防雷器通流容量和保护水是成正比的,即防雷器通流容量越大,其保护水或限制电压就越大。在防雷工程中,防雷器保护水必须小于被保护设备的耐压水,当我们选用保护水较低的防雷器型号时,其通流容量也必然较小,但由于雷电的能量是非常巨大的,雷电流强度很可能会**过防雷器所能承受的通流容量强度,从而造成防雷器损坏,导致防雷失败并造成被保护设备损坏。
同样,我们如果只选用通流容量较大的防雷器型号,防雷器虽然可以承受雷电流的冲击,但由于其保护水或限制电压相对也会较高,再叠加上从防雷器安装位置到被保护设备间线路的感应雷强度,会造成到达被保护设备的电涌电压**过设备的耐压值,造成设备的线路或元器件发生电击穿。
所以,我们需要选用不同的通流容量和保护水的防雷器型号,配合使用,实现多级防护、阶梯式限压的防雷系统,达到既能安全的泄放雷电流,又能将电涌电压限制在被保护设备耐压值以下甚至更低。
电源三级防雷器的作用:
级防雷器:防止直接的传导雷进入LPZI区,将上万至数十万伏的浪涌电压限制到2500V-3000V内。
*二级防雷器:进一步将通过级防雷器的余浪涌电压限制到0V-2000V内。
*三级防雷器:将余浪涌电压的值降低到1000V以内,使浪涌的能量不致损害被保护设备。