长沙科盛电气技术有限公司是防雷行业**生产厂家,是一家专业从事防雷产品的研发、设计、生产、销售,防雷工程设计与施工、改造于一体的综合型高科技企业,正式成立于2017年。
大多建于地势高处,如高山、郊区、建筑物上,基站天线往往高出建筑物已有的防雷接闪器,成为雷击高发点。所以,对的防雷不仅要考虑直击雷的防护,还要考虑对雷电感应的防护,以及对雷电波入侵的防护,对通信线路的屏蔽和建立良好的接地系统,降低接地电阻,进行等电位连接,避免地电位反击。
一 直击雷防护
为避免智能天线遭受雷击,可以在支架主体杆上焊接一支高度适宜的避雷针,使避雷针足够保护以90度角散开的智能天线,并用95mm 多股双绞线焊接避雷针和天面避雷带。如果条件允许,可以在距天线支架旁3米左右的位置设置一根优化避雷针。避雷针的高度应使基站天线置于其保护范围之内,具体计算方法可根据天线高度并参考滚球法。这样,避雷针与天线分体设置,在雷电发展成放电之前,由于避雷针针尖附近电场强度强,可提前适时的产生一个连续放电路径与雷云的下行先导汇合,将雷电流吸引到自己身上并通过引下线、接地装置安全的将雷电流泻入大地,有效的保护了基站天线和主设备。对于避雷针的材料选择和技术规格可根据周围环境和当地气候而定。
二 感应雷和雷电波侵入的防护
感应雷是雷电在雷云之间和雷云对地放电时,在附近的户外电力线、传输信号线、设备间连接线产生电磁感应并侵入设备,使串连在线路中间或终端设备遭到损坏。雷电波侵入则指通过直击或电磁感应和静电感应沿传输线路侵入的雷电波。根据波传输理论,雷电波在传输过程中波阻抗发生变化会产生反射、折射,可导致波阻抗突变处的电压升高,产生浪涌,加大对设备的危害。受到感应雷和雷电波侵入的危害主要是通过与基站主设备连接的电源线、信号线、天馈线的电磁耦合或静电感应的形式进入设备的感应过电压波和雷电电磁脉冲。因此,必须在基站设备的电源线、信号线、天馈线的各种接口上加装相应的避雷器。
1、基站电源防雷
目前的交流电源主要由市电网提供,由于市电网的不稳定和停电的原因,以及的工作环境恶劣,条件苛刻,设备市电网的浪涌和遭受雷电过电压损坏的可能性较大。因此必须对基站内电源系统进行分级防护,首先在基站市电入口安装80-120kA电源防雷箱,然后在交流配电柜安装40-60kA电源防雷模块,从而压降到,保护通信设备电源系统安全。
2、基站天馈线防雷
为了避免感应雷电流和雷电波从基站天馈线侵入基站主设备,损坏设备电子板,所以应在天馈线进入设备的接口串接天馈避雷器。避雷器的工作频率和接口方式要与接站天馈线工作要求相适应,并且应采用高通滤波器设计,能有效的降低插入损耗,不影响基站对信号的收、发。一般的有六根天馈线,从不同的角度接发信号,因此,每线需要串接一个避雷器。
3、基站信号线防雷
的信号线在进入基站主设备前都是在天面经过很长距离的铺设,由此增加了感应雷侵入概率。为避免感应雷从信号线入侵,可在部分基站安装信号避雷器,避雷器应具有能免遭雷击产生的感应过电压和瞬间浪涌电压危害的双级保护装置,能降低压和寄生电容以及快速响应能力。同时信号线在天面部分应套设一定长度的金属管屏蔽。
浪涌保护器关键参数:
放电电流Imax/冲击放电电流Iimp
标称放电电流In
电压保护水Up
可持续工作电压Uc
可持续工作电压Uc是指浪涌保护器能够长时间稳定并可以持续工作,不会对浪涌本身造成损害的交流工作电压或直流工作电压,其值应远远大于额定电压Un。
因为浪涌保护器所处的电压环境是不稳定的,电力系统电压处于持续不断的波动之中,如果浪涌保护器的可持续工作电压参数不能满足所处电压环境的要求,那么浪涌保护器在该电压环境下使用时,会加速浪涌保护器的劣化,从而会使浪涌保护器过快劣化失效,使设备失去保护,而频繁更换浪涌保护器又会建设成本。
如何选择SPD的UC值?
我们先来看相关的标准:GB/T 12325-2008《电能质量 供电电压偏差》中规定:
35kV及以上供电电压正、负偏差的值之和不**过标称电压的10%;20kV及以下三相供电电压偏差为标称电压的±7%;220V单相供电电压偏差为标称电压的+7% ~ -10%。
所以220V交流系统,其电压波动区间为198V~235.4V;380V交流系统,其电压波动区间为353.4V~406.6V。
在低压领域,我国使用的主要交流电压等级是单相220V/380V。
其中,民用领域以220V为主,工业领域以380V为主,所以,在选择浪涌保护器时,其可持续工作电压必须要覆盖相应的电压波动区间,个别工业领域还会用到更高的电压等级,那么在选择浪涌保护器时,其可持续工作电压也要相应。
接线形式需要特别注意,目前,我*雷器厂家生产的交流SPD,UC值普遍在255V-760V之间,UC是相电压,在做防雷设计时,如何正确选择SPD的UC值呢?
在此,需要特别注意电力变压器二次侧的接线方式。,因为在工业10/0.4kV变压器中,由于电力变压器二次侧的连接形式不同,出线电压也会相应改变。
1、当变压器低压侧采用星型接线并引出中线时,出线每相电压为220V,线电压为相电压的√3倍,即380V。此时,选择浪涌保护器时,选择单相Uc为255V或者275V也是没有问题的。
2、当变压器低压侧采用角型接线时,由于角型接线的线电压等于相电压,均为380V,此时,选择浪涌保护器时,单相255V或者275V的Uc已经不能满足使用要求,应当选择单相Uc为385V或者440V的浪涌保护器来对设备线路进行保护。
石油化工产业中会使用大量电气设备在内的供电系统来维持正常的运转,在生产经营中,电力系统的安全至关重要,为了**电气设备不受浪涌的冲击和影响,通常会使用避雷器,也就是浪涌的保护装置来提高安全性能,**供电和石化生产过程的稳定性,防止出现由于瞬时过高电压或者雷击导致设备损坏。
1、石油化工行业中浪涌保护器的分类
在石油化工行业内部的供电系统中所使用的浪涌保护器主要分为两大类型,按照不同的依据和实际使用情况,可以保护石化产业生产和经营过程中所使用的电气设备的安全与稳定。
1.1按照不同的工作机理来划分,包括电压开关型、组合型和限压型
(1)电压的开关型保护装置,是在没有产生瞬间的高压国电状态下呈现出高阻抗的一种装置,一旦遭到雷击而导致的浪涌现象出现,电压会在瞬间**过额定电压达到一个峰值,装置就会*做出应有的反应,高阻抗就会*转化为低阻抗,供高压下的电流顺畅的通过,达到分流减轻供电系统压力的目的。
(2)限压型保护装置的正常状态与开关型相同,保持着高阻抗的电流通过状态,与开关型不同之处在于其响应瞬时高压的过程中,阻抗的变化过程是逐渐降低的,随着不断减小的阻抗,引导高压电流通过。(3)组合型保护装置就是将开关型以及限压型的构件和设备组装结合在一起使用,这种组合的模式能够适应多种电涌的状况,可以根据电压的特性来选择保护的装置。
1.2按照具体用途来划分,包括电源线路以及信号线路这两种保护装置
(1)电源线路中的保护装置能够将瞬时产生的巨大电压下的电流通过分级分流的方式来减轻对设备造成的损害,也降低了供电的风险系数,其分为多级保护装置,形成梯级分配受到的浪涌高压负荷,将巨大的能量分级释放,达到稳定安全的保护效果。
(2)信号线路中的保护装置其本质就是一种信号避雷设备,是用来防止雷电形成的雷电波通过信号线路的前端对设备形成损害。
2、石油化工行业中浪涌保护器的应用
石化工业生产和操作的安全性是经营的首要任务和必要**,供电设备的安全性就是其中关键的环节,形成良好的防护举措和系统不但可以加强生产安全与稳定性,而且还可以保护好大量的电器设备能够持续的运转,减少企业和整个行业内部的经济损失,避免了很多重大事故出现,浪涌保护装置的应用发挥了较大的作用,下面就着重的探讨保护装置在石化产业中的具体用途和注意事项。
(1)浪涌保护的模式有很多种,针对石化产业的供电系统的具体特点来科学合理的选择不同的保护模式是的做法,主要采用的是七、十等保护模式,但是我们也要注意它们自身存在的不足和缺陷,在使用时要注意关注和弥补缺陷,完善保护措施。
(2)电气设备的布局和位置,是保护装置安放的重要依据和参照,只有合理的分析的保护装置的安装位置,才能更好的发挥保护功能。
(3)对于石油化工行业中,为保护电器设备的安全运行,可以安装浪涌保护器来减少浪涌对低压电器系统的危害,我们可以采用级间配合分析来安装浪涌保护器,确保设备的正常运行。在对石油化工行业进行浪涌保护器SPD的级间配合时,为确保低压配电设备的安全,可以采用多级保护的措施来减少感应雷、雷击等造成的危害。在实际的安装中,可以在不同地方对浪涌保护器分别进行安装,这样就可以防止电力经过时对电器设备造成的损伤和破坏,也就是说在大量电源通过安装有浪涌保护器的位置,电流在经过级的时候就会被大量的释放,以此类推电流经过*二级以及*三级的时候也会被其释放。因此在实际的浪涌保护器安装中应该确保各级之间的有效配合,保证各级之间对电流的有效释放,提高石油化工行业中电气设备的工作效率。
3、总结
由上可知,在石油化工行业中电气设备的应用,提高了工作的效益,同时也给工作中的安全保护提出了更高的要求,浪涌保护器的出现,正是为了应对雷电、感应雷、电磁脉冲等危害的有效武器。
1、对外部引入的电缆线的电涌保护
通常,所有的从外面进入污水处理厂的导电系统都必须连接到等电位连接装置中。 等电位连接的要求,是通过所有金属系统的直接连接,及在组成系统的工作电压下所有系统的间接连接来实现。这些SPD必须具有雷电电流泄放的能力(1级SPD:测试波形为10/350μs)。防止雷电流进入建筑物的内部,等电位联接应尽可能地靠近入口。
2、IT系统的电涌保护
为安全起见,进户线入口是所有到污水处理厂的IT电缆的传输接口。在该处使用了具有雷电流承载能力的SPD(损害类型为D1)。气体放电管常安装于此。从传输接口处,线缆被直接引向开关柜并在那里接触连接。根据所做的风险分析,在线缆的入口处必须引入SPD,它应适合该环境条件下的应用(C2类)并能与该系统兼容。 这就是一个完整的、用于IT布线系统的防止电涌的保护概念。
3、低压供电系统的电涌保护
在上述的应用中,1级SPD被安装在建筑物的入口。另外,为保护控制和系统中的电源,又额外地安装了一个2级SPD。在现有所描述的应用中,为保护终端设备再安装一个SPD,它们之间以及与被保护的终端设备必须做到相互协调,此外还要遵守厂家相应的说明和指示。相对于其他应用,在低电压用户装置中使用的SPD没有什么特殊性,并常常都给予了说明。
4、等电位连接
完整的污水处理厂的监测/控制包括了符合IEC 60364-4*41部分的等电位连接。为避免不同部分及外部导体的电势差,要对业已存在的等电位连接进行测试。建筑物的支撑及建筑部件,如管道、容器等也要被整合到了等电位连接中,这样,即使在发生故障时也不会造成电势差。在使用SPD时,每个连接到等电位连接处的接地导线的横截面积必须按照制造商的SPD指示说明来设计。
总结
新的关于雷电保护标准的草案,要求人们采用以未来为导向的、灵活和可靠的方法,也使建筑物中的高可用性的电子系统获得全面的防雷保护成为可能。风险分析为可靠地拟订技术/经济保护概念提供了一个额外的规划途径。计划保护措施的执行要根据IEC 62305中1-4部分的保护标准。总之,新的标准草案基本满足了在受雷电影响时,电力系统及IT系统的高可用性的要求。